Sunday 30 October 2016

Thumb-steered drone leaves you with a free hand

23:00 Posted by Anonymous 2 comments
The shapes and sizes of drones have changed a lot in recent times, but most serious quadcopters are still controlled by way of a dual-joystick controller (autonomous flyers notwithstanding). A new crowdfunding campaign is coming at it from a different angle, by developing a drone that can be flown with a single hand using a stick and thumb ring.

It is true that getting up to speed as a drone pilot using joystick controllers can take some time. The team behind Shift is aiming to give novices an easier way to earn their wings through what it claims is a more intuitive way to fly.

The drone itself has a pretty standard and respectable enough list of specs. It carries a 4K camera that shoots 13-megapixel stills, 8 GB of onboard memory and even a claimed 30 minutes of flight time.


But the controller is something we haven't seen before. It is basically a short fat stick that you hold in one hand and slide your thumb through a ring on top. By moving your thumb around you can then guide the drone through the air: push left and the drone flies left, push forward and the drone flies forward and move up to have the drone increase its altitude. There is also separate toggle on the front that can be used to change the drone's orientation with your index finger.

This does sound like a simpler way to control a drone, but we'd be interested to see how well it works in practice. Our encounters with drones controlled via smartphones and watches quickly reminded us how reliable joysticks are once you get a handle on them, and perhaps there is a reason they have remained the controllers of choice for so long.

We'd also question the value of being able to fly one-handed, which is billed as Shift's big advantage. Piloting a drone can take some concentration, so trying to multitask and make phone calls or take a sip of coffee at the same time might just be a recipe for a busted aircraft.

The team behind Shift is aiming to give novices an easier way to earn their wings

The Shift controller is said to be compatible with some already existing drones including models from Syma and WLtoys, and can be pre-ordered with a camera-less mini-drone. The company hopes to ship in May 2017 if all goes to plan.

Source: New AtlasShift

Saturday 29 October 2016

Wiring the brain with artificial senses and limb control

23:00 Posted by Anonymous No comments
There have been significant advances in developing new prostheses with a simple sense of touch, but researchers are looking to go further. Scientists and engineers are working on a way to provide prosthetic users and those suffering from spinal cord injuries with the ability to both feel and control their limbs or robotic replacements by means of directly stimulating the cortex of the brain.

For decades, a major goal of neuroscientists has been to develop new technologies to create more advanced prostheses or ways to help people who have suffered spinal cord injuries to regain the use of their limbs. Part of this has involved creating a means of sending brain signals to disconnected nerves in damaged limbs or to robotic prostheses, so they can be moved by thought, so control is simple and natural.

However, all this had only limited application because as well as being able to tell a robotic or natural limb to move, a sense of touch was also required, so the patient would know if something has been grasped properly or if the hand or arm is in the right position. Without this feedback, it's very difficult to control an artificial limb properly even with constant concentration or computer assistance.

Bioengineers, computer scientists, and medical researchers from the University of Washington's (UW) GRIDLab and the National Science Foundation Center for Sensorimotor Neural Engineering (CSNE) are looking to develop electronics that allow for two-way communication between parts of the nervous system.

The bi-directional brain-computer interface system sends motor signals to the limb or prosthesis and returns sensory feedback through direct stimulation of the cerebral cortex – something that the researchers say they've done for the first time with a conscious patient carrying out a task.

In developing the new system, volunteer patients were recruited, who were being treated for a severe form of epilepsy through brain surgery. As a precursor to this surgery, the patients were fitted with a set of ElectroCorticoGraphic (ECoG) electrodes. These were implanted on the surface of the brain to provide a pre-operational evaluation of the patient's condition and stimulate areas of the brain to speed rehabilitation afterwards.

According to the UW, this allowed for stronger signals to be received than if the electrodes were placed on the scalp, but wasn't as invasive as when the electrodes are put into the brain tissue itself.

While the electrode grid was still installed, the patients were fitted with a glove equipped with sensors that could track the position of their hand, use different electrical current strength to indicate that position and stimulate their brain through the ECoG electrodes.

The patients then used those artificial signals delivered to the brain to "sense" how to move their hand under direction from the researchers. However, this isn't a plug-and-play situation. The sensation is very unnatural and is a bit like artificial vision experiments of the 1970s where blind patients were given "sight" by means of a device that covered their back and formed geometric patterns. It worked in a simple way, but it was like learning another language.

"The question is: Can humans use novel electrical sensations that they've never felt before, perceive them at different levels and use this to do a task?," says UW bioengineering doctoral student James Wu. "And the answer seems to be yes. Whether this type of sensation can be as diverse as the textures and feelings that we can sense tactilely is an open question."

For the test, three patients were asked to move their hand into a target position using only the sensory feedback from the glove. If they opened their fingers too far off the mark, no stimulation would occur, but as they closed their hand, the stimulus would begin and increase in intensity. As a control, these feedback sessions would be interspersed with others were random signals were sent.

According to the team, the hope is that one day such artificial feedback devices could lead to improved prostheses, neural implants, and other techniques to provide sensation and movement to artificial or damaged limbs.

"Right now we're using very primitive kinds of codes where we're changing only frequency or intensity of the stimulation, but eventually it might be more like a symphony," says Rajesh Rao, CSNE director. "That's what you'd need to do to have a very natural grip for tasks such as preparing a dish in the kitchen. When you want to pick up the salt shaker and all your ingredients, you need to exert just the right amount of pressure. Any day-to-day task like opening a cupboard or lifting a plate or breaking an egg requires this complex sensory feedback."

The research will be published in IEEE Transactions on Haptics.

Friday 28 October 2016

Drone receives wireless power, on the fly

22:12 Posted by Anonymous No comments
Given that the battery life of most multicopter drones typically doesn't exceed 30 minutes of flight time per charge, there are many tasks that they simply can't perform. Feeding them power through a hard-wired tether is one option, although that only works for applications where they're hovering in place. Scientists at Imperial College London, however, are developing an alternative – they're wirelessly transferring power to a drone as it's flying.

For their study, the scientists started with an off-the-shelf mini quadcopter. They proceeded to remove its battery, add a copper coil to its body, and alter its electronics.

The researchers also built a separate transmitting platform that uses a circuit board, power source and copper coil of its own to produce a magnetic field. When placed near that platform, the drone's coil acts as a receiving antenna for that magnetic field, inducing an alternating electrical current. The quadcopter's rejigged electronics then convert that alternating current to direct current, which is used to power its flight.

Known as inductive coupling, the technique has been around since the time of Nikola Tesla. According to Imperial College, however, this is the first time that it has been used to power a flying vehicle. While it currently only works if the drone is within 10 cm (3.9 in) of the transmitter, it is hoped that the range can be greatly increased.

Additionally, instead of continuously powering battery-less copters, it is envisioned that the technology could be used to recharge drones' onboard batteries as they hover over ground support vehicles equipped with the transmitters – this would allow them to remain airborne while recharging, instead of having to land.

It's also possible that the drones could be wired to serve as flying transmitters themselves, "beaming" power from their battery to recipient devices such as hard-to-reach environmental or structural stress sensors, or even to other drones that need a mid-air recharge. A team at the University of Nebraska-Lincoln, in fact, has already used a quadcopter as a flying wireless charger.

Video:

Roving robots roam your clothes

06:57 Posted by Anonymous No comments


If you don't like the thought of bugs crawling all over you, then you might not like one possible direction in which the field of wearable electronics is heading. Researchers from MIT and Stanford University recently showcased their new Rovables robots, which are tiny devices that roam up and down a person's clothing – and yes, that's as the clothing is being worn.

The centimeter-sized robots hang on by pinching the fabric between their wheels, with the physically-unconnected wheel on the underside of the material held against the others simply by magnetic attraction.

Each Rovable contains a battery, microcontroller, and a wireless communications module that lets it track the movements and locations of its fellow little robots. It also has an inertial measurement unit (IMU), which includes a gyroscope and accelerometer. By using that IMU and by counting its wheel revolutions, the robot is able to keep track of its own location, allowing for limited autonomous navigation on the wearer's body.


In lab tests, one battery was sufficient for up to 45 minutes of continuous clothes-roaming.

Once the technology is developed further, suggested applications for it include interactive clothing/jewellery, tactile feedback systems, and changeable modular displays such as name tags.

The Rovables were recently described at the User Interface Software and Technology Symposium, and can be seen in action in the video below.

Thursday 27 October 2016

Kit Creatives: Living room gadgets

09:45 Posted by Anonymous 1 comment
We’ve seen a variety of car related themes on Kit Creatives over the last two weeks. How about taking the fun indoors and making some interesting themes that can make your living room tech savvy?

It certainly would be cool if we could make some projects that were to help us some of the activities we do on a daily basis. Not just that, you could also win a few words of appreciation from guests who come calling.

Following are three fun “Kit-creatives” that you can make using your foundation and beginner level kits. 

1) Post Box Indicator-F
 
In the age of the email and whatsapp, the mail is not exactly glamorous. Also, we tend to not check the post box on a regular basis for mails. Let's make a circuit to detect the presence of letter inside the box and indicate the same with the help of a LED. 

Find out how to do it over here

2) Night Crawler Robot

Tired of searching for your lost items under the dark corners of the bed? Well, you could use a torch light, but why get your arms into darkness when you can actually send a robot to search for it? Part utilitarian part pranky, this will be a fun project to try out. 
Find out how to do it over here 


3)Little Robotic Cleaner - F+B

You probably have a vacuum cleaner back home, but this cute little innovation could still come handy in case you don’t have one back home. Build a cute little robotic cleaner using the stock robot.
Find out how to do it over here 


CubeSats could soon be zooming around space under their own power

02:47 Posted by Anonymous No comments

Rubik's-cube-sized CubeSats are a nifty, cheap way for scientists to put a research vessel into space, but they're limited to orbiting where they're launched – until now. Los Alamos researchers have created and tested a safe and innovative rocket motor concept that could soon see CubeSats zooming around space and even steering themselves back to Earth when they're finished their mission.

Consisting of modules measuring 10 x 10 x 11.35 cm (3.9 x 3.9 x 4.5 in), these mini-satellites first launched in 2003, but are currently lacking in propulsion because they're designed to hitch a ride into space with larger, more expensive space missions. They're usually deployed along with routine pressurized cargo launches, usually into low orbits that limit the kinds of studies that CubeSats can perform.

This limitation is, of course, frustrating for space researchers. In fact, the National Academy of Science recently identified propulsion as one of the main areas of technology that needs to be developed for CubeSats.

Bryce Tappan, lead researcher on the Los Alamos National Laboratory Cube Sat Propulsion Concept team says propulsion would greatly expand the mission-space that these small, low-cost satellites can cover. "It would allow CubeSats to enter higher orbits or achieve multiple orbital planes in a single mission, and extend mission lifetimes," he says.

The roadblock to building a self-propelling CubeSat is the inherent risk in the way conventional spacecraft propel themselves through space. Usually, spacecraft use mixed liquid fuel and oxidizer systems to achieve propulsion – methods that are somewhat unstable. This poses a level of risk that would make self-propelling CubeSats unacceptable aboard another organization's space mission.

"Obviously, someone who's paying half a billion dollars to do a satellite launch is not going to accept the risk," says Tappan. "So, anything that is taken on that rideshare would have to be inherently safe; no hazardous liquids."

The rocket propulsion concept that the researchers have developed is a solid-based chemical fuel technology that is completely non-detonable. They're calling the new concept a "segregated fuel oxidizer system," with solid fuel and a solid oxidizer kept completely separate inside the rocket assembly.

The researchers recently tested a six-motor CubeSat-compatible propulsion array with great success.

"I think we're very close to being able to put this propulsion system onto a satellite for a simple demonstration propulsion capability in space," says Tappan.

The system works in many of the same ways as a conventional chemical rocket motor works, with a pyrotechnic igniter initiating burn in a high nitrogen, high hydrogen fuel section, releasing hydrogen rich gases that flow into the oxidizer section. The chemical reaction there creates tremendous heat and expanding gases that flow through a nozzle to provide thrust.

"Because the fuel and oxidizer are separate," said Tappan, "it enables you to use higher-energy ingredients than you could use in a classic propellant architecture. This chemical propulsion mechanism produces very fast, high-velocity thrust, something not available with most electrical or compressed gas concepts."

As well as expanding research capabilities, Tappan says that another desirable application for a self-propelling CubeSat would be a de-orbit capability.

With more than half a million individual pieces of "space junk" now in various orbits around the Earth, small satellites may eventually have to demonstrate a compelling mission before they can be launched, or have a de-orbit capability so they can burn up in the atmosphere without adding to the space junk problem.

If CubeSats were self-propelling, they could send themselves back towards Earth after their mission is complete and burn up in the atmosphere, so they don't add to the space junk issue.

Tappan would eventually like to see their new rocket motor concept used in more ambitious space missions. "Not only simple things like de-orbiting, but in groundbreaking missions like taking a small spacecraft to the moon, or even to somewhere as far away as Mars," he says.

To learn more about the new propulsion system, watch the video below:



Wednesday 26 October 2016

Harvard researchers 3D print a heart-on-a-chip

09:44 Posted by Anonymous 1 comment

Microphysiological systems, or organs-on-chips, are emerging as a way for scientists to study the effect that drugs, cosmetics and diseases may have on the human body, without needing to test on animals. The problem is, manufacturing and retrieving data from them can be a costly and time-consuming process. Now researchers at Harvard have developed new materials to enable them to 3D print the devices, including the integrated sensors to easily gather data from them over time.

At around the size of a USB stick, organs-on-chips use living human cells to mimic the functions of organs like the lungs, intestines, placenta and heart, as well as emulate and study afflictions like heart disease. But as promising as the technology is, making the chips is a delicate, complicated process, and microscopes and high-speed cameras are needed to collect data from them.

"Our approach was to address these two challenges simultaneously via digital manufacturing," says Travis Busbee, co-author of the paper. "By developing new printable inks for multi-material 3D printing, we were able to automate the fabrication process while increasing the complexity of the devices."

In all, the Harvard team developed six custom 3D-printable materials that could replicate the structure of human heart tissue, with soft strain sensors embedded inside. These are printable in one continuous and automated process and separate wells in the chip host different tissues.

"We are pushing the boundaries of three-dimensional printing by developing and integrating multiple functional materials within printed devices," says Jennifer Lewis, another of the paper's co-authors. "This study is a powerful demonstration of how our platform can be used to create fully functional, instrumented chips for drug screening and disease modeling."

The incorporated sensors allow the researchers to study the tissue over time, particularly how their contractile stress changes, and how long-term exposure to toxins may affect the organs.

"Researchers are often left working in the dark when it comes to gradual changes that occur during cardiac tissue development and maturation because there has been a lack of easy, non-invasive ways to measure the tissue functional performance," says Johan Ulrik Lind, first author of the study and postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). "These integrated sensors allow researchers to continuously collect data while tissues mature and improve their contractility. Similarly, they will enable studies of gradual effects of chronic exposure to toxins."

The research was published in the journal, Nature Materials, and a time-lapse of the 3D printing process can be seen in the video below.